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the affine spaces of the images for visual features, starting
with a course sampling and iteratively increasing the density
of sampling. Once a predetermined threshold number of
unambiguous matches has been satisfied, the iterative sam-
pling and matching can be stopped. The iterative sampling
and matching methodology is especially, but not exclusively,
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GO6K 9/62 (2006.01) closed can be useful in object/scene recognition applications.
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SYSTEMS, METHODS, AND SOFTWARE
IMPLEMENTING AFFINE-INVARIANT
FEATURE DETECTION IMPLEMENTING
ITERATIVE SEARCHING OF AN AFFINE
SPACE

RELATED APPLICATION DATA

This application claims the benefit of priority of U.S. Pro-
visional Patent Application Ser. No. 61/626,906, filed on Oct.
5, 2011, and titled “Methods for Affine Invariant Feature
Detection,” which is incorporated by reference herein in its
entirety.

FIELD OF TELE INVENTION

The present invention generally relates to the field of com-
puter vision. In particular, the present invention is directed to
systems, methods, and software implementing affine-invari-
ant feature detection implementing iterative searching of an
affine space.

BACKGROUND

Automated feature-based image matching is a useful tool
in many computer-implemented object/scene recognition
applications from robotic vision to facial recognition, among
many others. A number of feature-based image matching
algorithms have been developed over the past 20 years. Many
of these algorithms, such as the scale-invariant feature trans-
formation (SIFT) algorithm, deal well with rotation and scal-
ing as between a reference image and a query image. How-
ever, most of these algorithms are not robust enough to deal
with full affine movement, for example when there is large
movement of the camera and/or objects in the scene, and
others that attempt to handle full affine movement are com-
putationally very expensive and are, therefore, not practical
for commercial and other real-world applications.

Several algorithms have been proposed that deal with the
full affine movement and try to achieve robustness to affine
movement by normalizing local patches, or regions, that have
undergone an unknown affine distortion. Normalization
transforms each of these regions into a standard form, where
the effect of the affine transform has been eliminated. The best
examples of such algorithms are the Harris-Affine and Hes-
sian-Affine region detectors, and the “maximally stable extre-
mal region” (MSER) algorithm. MSER, in particular, has
been demonstrated to often have better performance than
other affine invariant detectors (when a strong change of scale
is present, however, SIFT still exhibits better performance
than most other methods). It is important to note that none of
these normalization algorithms are truly affine invariant
because they start with initial feature scales and locations that
are selected in a non-affine-invariant manner. In other words,
even though these algorithms claim robustness or invariance
to the affine model, their feature detection step is only invari-
ant to the scale-plus-rotation model and thus they are not truly
affine-invariant.

A very recent effort, the “affine SIFT” (ASIFT) algorithm,
tries to achieve true affine invariance by searching the full
affine space on a lower resolution version of the images. The
best estimates for the affine movement are then tested on the
full resolution images. In theory this algorithm is affine-
invariant, but in practice it works by running the SIFT algo-
rithm multiple times, which makes it slower and diminishes
its applicability.
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2
SUMMARY OF THE DISCLOSURE

In one implementation, the present disclosure is directed to
amethod of matching visual features within a first image with
visual features within a second image. The method includes
starting with a coarse sample, automatedly iteratively sam-
pling visual features of each of the first and second images so
as to continually increase sampling density of the sampling;
and continuing the sampling until at least a desired number of
unambiguous matches has been found between batches of the
visual features of the first and second images detected in
iterations of the iterative sampling.

In another implementation, the present disclosure is
directed to an object/scene recognition method. The method
includes: 1) automatedly generating a batch of feature
descriptors for a plurality of sampled visual features of a first
image; 2) automatedly generating a batch of feature descrip-
tors for a plurality of sampled visual features of a second
image; 3) automatedly performing a matching algorithm on
the batches in attempt to find matches between the feature
descriptors in the batch corresponding to the first image and
the feature descriptors in the batch corresponding to the sec-
ond image; 4) automatedly assessing the quality of matches;
and if the quality of the matches does not meet a threshold,
automatedly repeating the steps 1 through 4 with differing
sets of batches until the quality of the matches meets or
exceeds the threshold.

In still another implementation, the present disclosure is
directed to a computerized method of identifying, from a
plurality of reference descriptors, a nearest neighbor to a
query descriptor. The computerized method includes auto-
matedly generating an initial k-d Tree from an initial set of the
plurality of reference descriptors and storing the initial k-d
Tree in a memory; autoinatedly searching the initial k-d Tree
for an initial nearest-neighbor of the initial set to the query
descriptor; automatedly identifying a hyperball as a function
of'the initial nearest-neighbor; and automatedly generating a
list of nodes to revisit as a function of the hyperball and
storing the list in a memory.

In yet another implementation, the present disclosure is
directed to a machine-readable storage medium comprising
machine-executable instructions for performing an object/
scene recognition method. The machine executable instruc-
tions include a first set of machine-executable instructions for
performing at least the following steps: 1) generate a batch of
feature descriptors for a plurality of sampled visual features
of'a first image; 2) generate a batch of feature descriptors for
a plurality of sampled visual features of a second image; 3)
perform a matching algorithm on the batches in attempt to
find matches between the feature descriptors in the batch
corresponding to the first image and the feature descriptors in
the batch corresponding to the second image; 4) assess the
quality of matches; and a second set of machine-executable
instructions for determining if quality of the matches meets a
threshold and automatedly repeating the steps 1 through 4
with differing sets of batches until the quality of the matches
meets or exceeds the threshold.

In still yet another implementation, the present disclosure
is directed to a machine-readable storage medium containing
machine-executable instructions for performing a method of
identifying, from a plurality of reference descriptors, a near-
est neighbor to a query descriptor. The machine-executable
instructions include a first set of machine-executable instruc-
tions for generating an initial k-d Tree from an initial set of the
plurality of reference descriptors and storing the initial k-d
Tree in a memory; a second set of machine-executable
instructions for searching the initial k-d Tree for an initial
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nearest-neighbor of the initial set to the query descriptor; a
third set of machine-executable instructions for identifying a
hyperball as a function of the initial nearest-neighbor; and a
fourth set of machine-executable instructions for generating a
list of nodes to revisit as a function of the hyperball and
storing the list in a memory.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, the drawings
show aspects of one or more embodiments of the invention.
However, it should be understood that the present invention is
not limited to the precise arrangements and instrumentalities
shown in the drawings, wherein:

FIG.1is aflow diagram illustrating a conventional feature-
based object/scene recognition method;

FIG. 2 is a flow diagram illustrating a feature-based object/
scene recognition method of the present invention;

FIG. 3 is a diagrammatic representation of a feature-detec-
tion scheme of the present invention used to detect features
iteratively in batches;

FIG. 4 is a high-level diagram of an object/scene capturing
and recognition system made in accordance with the present
invention;

FIG. 5 is a diagram illustrating observational parameters
used is aspects of the present invention implementing a fully
affine invariant feature detection algorithm;

FIGS. 6 A and 6B are diagrams illustrating the construction
and use of an integral image;

FIGS.7A and 7B are diagrams illustrating the construction
and use of a rotated integral image;

FIG. 8 is a table of sampled observational parameters used
in an exemplary object/scene recognition algorithm of the
present invention;

FIG. 9 is a set of graphs illustrating the tilt/object-plane
rotation combinations appearing in the Table of FIG. 8;

FIG. 10 is a graph illustrating values of object-plane rota-
tion angles used in connection with the samples of the table of
FIG. 8;

FIGS. 11A, 11B, and 11C are, respectively, an illustration
of'a box filter, an illustration of an approximation of the box
filter of FIG. 11A, and a diagram illustrating the basic boxes
used to construct the approximation of FIG. 11B;

FIG. 12 is an illustration containing a subset of box filters
in a filter bank for the first octave of the scale observational
parameter for various values of the tilt and object-plane rota-
tion angles;

FIG. 13 is a diagram illustrating a searching algorithm for
searching candidate features in an affine space;

FIG. 14 is an illustration showing an exemplary sampling
grid and a weighted histogram of orientations of features
within the sampling grid;

FIG. 15 is an illustration showing an exemplary rotated
sampling grid and a resulting normalized sampling grid; and

FIG. 16 is a diagram illustrating searching and inserting of
nodes within an iterative k-d Tree.

DETAILED DESCRIPTION

Aspects of the present invention include methods for fea-
ture-based object/scene recognition that are computationally
efficient, especially when dealing with full affine movement
caused by, for example, differences in camera (observation)
location as between two images (herein referred to as a “ref-
erence image” and a “query image” or a “first image” and a
“second image,” or the like) being compared and/or difter-
ences in the location of one or more objects within the scenes
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of the images being compared. It is noted that the term
“object/scene recognition” refers to the recognition of object
(s) and/or scene in a query image based on the same object(s)
and/or scene appearing in a reference image.

In contrast to conventional feature-matching methods in
which corresponding complete sets of features in the refer-
ence and query images are located and described prior to
feature matching, various methods of the present invention
include iterative feature detection and description using a
greedy algorithm and sampled subsets of all of the features
within the images. Various methods of the present invention
also utilize iterative feature matching techniques to perform
the feature matching of the sampled feature points (which can
be, e.g., pixels, voxels, or points between pixels or voxels)
and their descriptions as between the two images. In many of
the methods, an important aspect is the high invariance to
observational differences between the images being com-
pared. As will be described below in connection with specific
examples, the observational differences are handled in the
various algorithms presented by accounting for four distor-
tions having geometric meaning, namely, one isotropic scal-
ing (o parameter), one tilt (T parameter), one object-plane
rotation (¢ parameter), and one image-plane rotation (1
parameter). As those skilled in the art will readily appreciate,
other aspects of the present invention include software that
implement the methods of the present invention in a comput-
ing environment, which can range from a single-processor
environment to a multi-processor environment to a distrib-
uted multi-processor environment, among others, as well as
include systems that implement such software.

As described in detail below, an object/scene recognition
method of the present invention progressively searches an
affine space, starting with a coarse sampling and iteratively
increasing the density of the sampling until the full space has
been searched. For example, such method starts by randomly
extracting N' features from each of the images and attempting
to find image matches based on these features. If the method
does not find a sufficient number of unambiguous matches,
then N' more features are randomly retrieved from each of the
images and the algorithm searches for matches again. After
each round of this procedure, the number of features detected
increases, which corresponds to increasing the density of the
affine space searched. This iterative/batch-processed proce-
dure is superior to brute-force search of the full affine space
(as proposed by ASIFT), because it allows stoppage of the
search procedure as soon as a sufficient number of matches
has been found.

For the sake of comparison of an object/scene recognition
method of the present invention to conventional object/scene
recognition methods, FIG. 1 illustrates an exemplary feature-
based object/scene recognition method 10. At step 15, feature
detection is performed. The objective of feature-detection
step 15 is to determine the location and, possibly, other obser-
vational parameters of the features within each of the images
being compared. Traditional approaches attempted to detect
corners or edges in the images but most current state of the art
methods detect features by searching for local extrema of a
filtered version of the input image.

At step 20, feature description is performed. The objective
of feature-description step 20 is to “describe” each of the
features detected at step 15. Typically, step 20 consists of
generating a k-dimensional vector that encodes the visual
information surrounding each of the feature locations
detected in step 15. There is a large body of work concerning
the best way of encoding the visual information, but a popular



US 9,141,871 B2

5

choice is to use histograms of image gradients because they
provide robustness to changes in illumination and to small
changes in feature location.

Atstep 25, feature matching is performed. The objective of
feature-matching step 25 is to find correspondences between
the features in the two images based on their descriptors and
location. In general, this is a combinatorial problem because
it is necessary to compare each of the features in the query
image to all of the features in the model image. Additionally,
in typical usage cases, there is occlusion, noise and large
movement distortions that create a large number of outliers
(i.e., features in one image that do not have a corresponding
match in the other image). Conventionally, step 25 of feature
matching is not performed until each of the images has fully
undergone the processing of feature detection at steps 15 and
feature description at step 20.

Following matching step 25, at step 30 decision making is
performed. The objective of decision-making step 25 is to use
the information from all the previous steps to decide if the
query image contains the object or scene represented in the
model image. This is a step that is not emphasized by many
authors since it may depend to a certain extent on the appli-
cation. However, the present disclosure addresses decision
making and concentrates on the more general case where no
particular information about the object/scene can be
assumed.

FIG. 2 illustrates an exemplary flow of an object/scene
recognition method 200 of the present invention and can be
contrasted against the convention flow of method 10 of FIG.
1. Referring to FIG. 2, as can be readily seen, method 200 has
the same basic framework as method 10 of FIG. 1 in thatithas
a feature detection step 205, a feature description step 210, a
feature matching step 215, and a decision making step 220.
However, as indicated by loop 225, method 200 includes an
iterative aspect. Generally, this iterative aspect performs fea-
ture detection (step 205), feature description (step 210), and
feature matching (step 215) in batches on successive subsets
of features and their corresponding identified feature points
and descriptions. This allows method 200 to, in most cases, be
computationally highly efficient, perhaps in all but the most
observationally distorted and/or scene-dissimilar query
images. This computational efficiency makes method 200
particularly suitable for implementing fully affine-invariant
object/scene recognition algorithms.

Before explaining the iterative, batch processing utilized
by method 200, reference is first made to FIG. 3, which
illustrates an exemplary feature-detection scheme 300 that
provides full affine invariance. Scheme 300 starts with an
image 304 to be matched. Image 304 can be either the refer-
ence image or the query image, depending on the stage of
processing. From image 304, an affine space 308 is defined
using an affine-space function, such as an affine-space func-
tion based on parameters X, y, 0, T, and ¢, where x and y are
Cartesian coordinates of points within an image, and o, T, and
¢ are, respectively, the scale, tilt, and object-plane rotation
observational parameters noted above. Consequently, in this
example the affine-space function can be written as F (x, y, 0,
T, ). As illustrated in FIG. 3, affine space 308 effectively
contains an infinite set of images, here, integer images, that
represent all suitable combinations of the observational
parameters O, T, and ¢. As described in detail below, features
of'image 304 are iteratively searched in batch fashioninaffine
space 308. In the example shown, the observation parameters
(0, T, ¢) are first sampled into a discrete set and, as illustrated
at step 312, this discrete set is used in conjunction with a bank
of'box filters to compute a subset of the integer images. Then,
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at step 316, the discrete set of integer images is processed to
detect local extrema to produce a set of feature locations 320.

Returning to method 200 of FIG. 2, but also referring to
FIG. 3 where noted, at step 205 affine-invariant feature loca-
tions, 320 (FIG. 3) are detected by searching for local extrema
(step 316 of FIG. 3) in the affine-space function F (x, y, 0, T,
¢). Instead of fully filtering the input images and then looking
for local extrema of the filtered images (the approach of all
major state-of-the-art algorithms), method 200 utilizes a
novel greedy algorithm for feature detection and description.
Briefly, this algorithm works by randomly deciding a starting
location on the scale (0) space and then exploring the neigh-
borhood of that location until a local maximum (or minimum)
is found. Upon convergence, the algorithm rejects features
with low contrast and/or along edges to ensure that only the
most stable features are detected.

Once a feature is detected, at step 210 its orientation 1 is
estimated and a corresponding descriptor d is computed. In
one example, the descriptor is a modified version of the SIFT
descriptor that makes use of the observation information (o,
T, ¢) in order to achieve full affine invariance.

After features are detected and described, it is necessary to
match them so that they can be used to recognize an object or
scene. Traditional methods of feature matching use balanced
k-dimension (k-d) Trees and rely on the fact that all features
in both images have been detected and described before fea-
ture matching begins. Such methods, however, are not appro-
priate for an iterative framework.

Instead, at step 215 features are matched in a manner that
allows for iterative/batch processing nature of method 200. In
one example, step 215 implements a feature-matching algo-
rithm that is based on the use of a novel iterative k-d Tree,
whichis described below in a detailed example. This new data
structure is ideal for applications in which the number of
features can increase at runtime for two primary reasons.
First, it can be easily expanded to incorporate more reference
features. Second, it stores information about previous queries
so that they do not need to be re-run when new reference
descriptors are introduced in the Tree. The present inventors
have shown, both theoretically and experimentally, that the
iterative k-d Tree gives superior performance for the task of
matching features in growing databases.

After feature matching for a first batch of detected and
described feature points has been performed, method 200
proceeds to step 220 where a decision is made as to the quality
of the matching between the two images. As will be seen
below, there are a number of ways to implement step 220. For
example, a first approach utilizes homography estimation and
verification, which is concerned with finding one or more
groups of features that can be related by one or more homog-
raphies. After a possible homography is detected, it is
inverted and applied to the image for verification. Only
matches that agree with one of the homographies in the image
are reported.

In a second approach utilizing a linear affine shape invari-
ant correspondence (LLASIC) algorithm, it is assumed that
objects are rigid and that the global movement between
images is affine. The decision problem is formulated as a
hypothesis test and derives the uniformly most powerful
(UMP) test that is invariant to the affine model. The matching
problem is then formulated as a quadratic maximization in the
space of permutation matrices. An efficient algorithm is then
used to solve this maximization problem.

In a third approach utilizing shapes as empirical distribu-
tions, the shape of an object is interpreted as a probability
distribution governing the location of the features of the
object. An image of an object, therefore, corresponds to a
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random drawing from the shape distribution and can be ana-
lyzed as an empirical distribution. This framework allows for
estimating geometrical transformations between images in a
statistically meaningful way using maximum likelihood and
for formulating the decision problem associated with shape
classification as a hypothesis test that can characterize the
performance.

In any of these or other approaches, the outcome of the
decision making process at step 220 can be used to deter-
mined whether steps 205, 210, 215, and 220 should be
repeated via loop 225 for another batch of feature points and
corresponding descriptions. The decision can be based, for
example, on whether or not the number of matches detected
and verified meets a certain predetermined threshold value.
Each of the foregoing steps of method 200 are illustrated
below in a detailed example.

Before proceeding to a specific detailed example that will
further illustrate the broad aspects of methods of the present
invention described above, an exemplary system 400 (FIG. 4)
in which one or more of the methods disclosed herein can be
implemented is first described. Referring to FIG. 4, system
400 includes object/scene recognition software 404 and a
processing environment 408 that executes steps of the soft-
ware. Software 404 implements an object/scene recognition
method of the present disclosure, such as method 200 of FIG.
2. Software 404 can be stored in any suitable memory 410,
which can be any non-volatile memory (e.g., magnetic stor-
age, optical storage, bubble storage, etc.), any volatile
memory (e.g., RAM, cache, etc.), and any combination of
non-volatile and volatile memory. In addition, memory 410 is
depicted as a single box so as to suggest a single location,
those skilled in the art will readily appreciate that the memory
can be located in a single location (e.g., on a single machine)
or can be dispersed between/among multiple locations, such
as might occur in a distributed computing environment. For
convenience, the appended claims use the term “machine-
readable storage medium” to denote any physical memory
(ies) on which software 404 can reside. In contrast, the term
“machine-readable medium” shall include not only machine-
readable storage media, but also transitory media, such as
propagating signals that can carry software in a suitable sig-
nal-encoded form.

As those skilled in the art will readily appreciate, software
404 includes machine-executable instructions 404A that
encode aspects of the relevant object/scene recognition
method and that can be executed by one or more suitable
processors 412. For convenience, processor(s) are repre-
sented by a single box that might suggest a single location.
Here, too, skilled artisans will readily recognize that in a
multi-processor environment, the multiple processors can be
local to one another or can be distributed, for example, across
alocal-area network, wide-area network, etc. Fundamentally,
there are no limitations on how many processors 412 are
involved in executing software 404 to provide the requisite
functionality.

The object/scene recognition method encoded in software
404 operates on images 416 that can be stored in memory 410.
Again, memory 410 can be any memory virtually anywhere,
such that the memory(ies) containing software 404 and the
memory(ies) containing images 416 do not necessarily have
to be the same memories. Intermediate and final results (not
shown) of executing software 404 can similarly be tempo-
rarily or permanently stored in memory. System 400 may
optionally include one or more image-acquisition devices
420, such as one or more still-image cameras, video cameras,
thermal imaging cameras, etc., for acquiring each reference
and/or query image of images 416. As examples of possible
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embodiments of system 400, the system can be embodied in
a server (not shown) that processes images from one or more
image sources, in a camera body (not shown) to give the
camera object/scene recognition functionality, in a worksta-
tion augmented with a camera to acquire query image to
compare with one or more previously acquired reference
images, in an autonomous vehicle to facilitate vehicle maneu-
vering based on machine vision, in wearable devices that
facilitate recognition of objects in the user environment and/
or facilitate user interaction with word-processing or other
computing systems, etc. Those skilled in the art will readily
appreciate that these are but a few examples of how system
400 can be instantiated into real-world applications.

EXAMPLE

1. Affine Invariance

As mentioned above, the iterative/batch-processing nature
of'methods of the present invention makes them computation-
ally efficient, especially for complex object/scene recognition
algorithms that are fully affine invariant. This section lays the
groundwork for one example of an iterative affine-invariant
feature detection algorithm. In section 1.1, the affine model is
decomposed into four distortions that have geometric mean-
ing: one rotation in the object plane, one rotation in the image
plane, one isotropic scaling, and one tilt (or anisotropic scal-
ing.) Section 1.2 introduces the scale-normalized Laplacian
of Gaussian (LoG) filter that will be used as the basis of the
exemplary feature detection scheme and shows that a filter
bank consisting of LoG filters can achieve invariance to scale
and rotation in the image plane. Section 1.3, details how the
original LoG filter bank can be expanded to achieve invari-
ance to the tilt parameter. Section 1.4 describes how invari-
ance to rotation can be achieved in the object plane by using
rotated integral images.
1.1 Affine Model Decomposition

In this example, modeling the affine distortions is started
by considering a small planar patch of an object o(X, y). Under
the affine model, each point x=[x, y]” in the patch will be
related to a point u=[u, v]” in the image by the Equation:

u=Ax+d €8}

where A represents the 2x2 affine distortion matrix and 0
represents a 2x1 displacement vector. The use of local fea-
tures provides invariance to the displacement vector d since
features in different images can be matched regardless of their
location. This allows u=Ax to be written. The affine distortion
in A can be decomposed into a sequence of four distortions
that have geometric meaning; scaling A, rotation in the object
plane ¢, rotation in the image plane 1, and angle of incidence
0:

A= AR WT@)R2A(P) @

- cos(y) —sin() [T O] cos(p) —sin(p)
N [sin(w cos() Ho 1Hsin(¢) cos(¢)}

where A>0 is the scaling parameter; the angle of incidence 0
is related to the tilt parameter T by 6=arccos 1/t; Ri are
rotation matrices; T is a tilt matrix (i.e., a diagonal matrix with
first eigenvalue T>1 and second eigenvalue equal to 1); and
the rotation in the object plane ¢ is restricted to the range [0,
m). FIG. 5 illustrates this decomposition. Note that 6=arccos
1r.

To achieve robustness to the full affine model, the present
example starts with a method that is robust to scale A and
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rotation in the image plane {y(namely, a scale-normalized
LoG detector) and search for features in the space of all
deformations that can be obtained by changing (T, ¢) in the
Movement Model (2).
1.2 Invariance to Scale and Rotation in the Image Plane

The starting point in the construction of the exemplary
feature detector is the scale-space function F (%, y, 0) defined
as the output of the convolution of the image with a scale-
normalized LoG filter (where ® is used to represent convo-
Iution):

Fx, 3, 0)713, ) ® Lo, 3).
The scale-normalized LoG filter is defined by:

3

Ly(x, y) ="V G(x, y) “

=G, M)+ G, )

where G™ (x,y) and G*” (X, y) correspond to the second order
derivatives in x and y of the Gaussian filter:

®

ax 1 P+ \(F -0t
o= e 5o | =

1 2y - ot
D= 2Z S T | T

The scale-space function F (x, y, 0) in Equation (3) has
been studied, and it has been shown that the normalization
factor o® is required for scale invariance. It has also been
demonstrated experimentally that it produced the most stable
features when compared with several other functions such as
the gradient, Hessian, or Harris detector.

Writing the filter in polar coordinates (r, 6), shows that it is
rotation invariant:

1 ©

2 \(r? =207
7 T | T A

and, therefore, invariant to the rotation parameter 1. Addi-
tionally, the objective function F (%, y, 0) in Equation (3)
depends not only on the spatial coordinates x and y, but also
on the scale parameter 0. This emphasizes the fact that each
filter detects features at a specific scale. Computing the image
responses to multiple filters allows one to search for features
at multiple scales {0,},_,,;" and therefore achieve scale
invariance, i.e., invariance to the A parameter in the affine
movement model.
1.3 Invariance to Tilt

To obtain invariance to the tilt parameter, the scale-space
function is modified to simulate the effect of the tilt on the
image. According to the movement model, in order to incor-
porate the eftect of the tilt parametert, it is desired to compute
the output of the filter not on the input image I (x, y) but on an
image of the form I (x, y)=I (t x, y) that incorporates the t
parameter; i.e., it is desired to compute:

Ly(r,0) =

Fix,y, 0, 0Lx, ) ® Lo(x, ) ©)

An objective is to include this “subsampling” on the x coor-
dinate effect into the filters. To do so, it is noted that 2-D
convolution between the image I (%, y)=I (T X, y) and the filter
L, (%, y) is equivalent to:
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(I ® Lo)(x, y) = f f 1ty VML G — 11, y — )dudy ®)

= ffl(‘ru, VLlg(x—u, y—v)dudyv
= ffl(ul, v)L(T(x— ﬂ, y—v)@dv
T T
1 TX — Uy
= —ffl(ul, v)L(T( y— v)duldv
T T

:ffl(ul,v)Lvl(Tx—u,y—v)duldv
T

=1L, 1wy

where the coordinate change u,=tu and the filter L, 1/t(x,
y)=1/tr L, (1/Tx,y) are introduced. For convenience, t=1/t is
defined as the inverse of the tilt parameter with t €(0, 1). This
allows it to be written that:

Loc(x, ) =702V Go (i, ¥) (&)
= 103 (G (tx, y) + G2 (1x, 1))

4 2+ Y PR+ YR =207
T o

and

1 10
Fx, y, 0,0 = (1®1m)(;x, y] 4o

which proves that the anisotropic subsampling distortion by ©
in the image may be modeled by the opposite distortion on the
filter L, followed by a subsampling in the outcome of the
convolution.
1.4 Integral Images and Invariance to Rotation in the Object
Plane

Several works have shown that box filters and integral
images can be used to greatly speed up various computing
intensive operations. As illustrated in FIG. 6A, the integral
image (or “summed area table”) is defined such that its value
atany pixel is equal to the sum of all the values of the previous
rows and columns; i.e., if I(x, y) is an image, the integral
image I(x, y) is defined as:

1%, ¥)=2,="Z =" l(m, 1) an

The integral image can be computed using four sums per pixel
if a recursive (raster-scan) algorithm is used:

I(x, »)=I(x-1, p)+x, y-D-Ix-1, y-1)+I(x, y) (12)

Or, if separate row sums are maintained, using only two sums
per pixel

As FIG. 6B shows, once the integral image is constructed,
the sum of the pixel values in any rectangular area of the
image can be computed in constant time, i.e., the sum of all
the pixels inside the rectangle {A, B, C, D}, is equal to
1I(A)-1(B)-1(C)+I(D). This shows that the integral image can
be used to quickly compute the output of a filter comprised of
a single rectangular section, or box.

To simulate the rotation in the object plane, ¢, the function
F (%, y, 0, t) in Equation (10) is modified to incorporate the
effect of a rotation in the input image; i.e., instead of applying
the filter L, (X, y) on the input image I (x, y), the filter is
applied on the rotated image 1 (x, y)=I (x cos(¢)-y sin(¢p), x
sin($)+y cos(¢)). That is, the objective function is:
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! (13)
Pl 3. 01,90 = g @ Lo 1)

Thus, to simulate the rotation ¢, this example uses rotated
integral images as illustrated in FIGS. 7A and 7B. Like the
regular integral images in FIGS. 6A and 6B, the construction
of a rotated integral image allows computation of the sum of
the pixel values in any rotated rectangle in the image in
constant time. This allows development of a box filter for the
case when ¢=0 and using it to achieve invariance to a ¢-rota-
tion by using a rotated integral image. Additionally, note that
it is possible to achieve the same invariance by computing the
integral image of a rotated version of the original image.

2. Filter Bank

This section describes the construction of the filter bank
used for feature detection in the present example. Section 2.1,
starts with the affine-space function F (x, y, 0, t, ¢) in Equation
(13) and samples the space of all observation parameters (o,
t, ¢) into a discrete, set, and, section 2.2 creates a box filter
bank that allows computation of the affine space function for
each combination of the observation parameters.

2.1 Sampling of the Observation Parameters

In the previous section, it was seen that the objective func-
tionF (x,y, 0,1, ¢) in Equation (13) describes the output of a
scale-normalized LoG filter with parameter o with an image
that was distorted by the observation parameters (t, o, ¢). In
order to find features, it is desired to search for local extrema
of'this function. However, the size of the space spanned by all
possible values of (0, t, ¢) is too large to examine, and thus it
is desired to sample it coarsely.

The affine space is first sampled based on the o parameter.
In this example, the space is divided into octaves, with each
octave coarsely related to an approximate doubling of the o
parameter. Unlike SIFT, where each octave corresponds to a
halving of the resolution of the image, the size of the integral
images of this example does not change when searching
different octaves (since the cost of a filtering operation
remains the same regardless of the scale). Instead, the step of
the grid searched is doubled. In most practical applications,
the initial grid corresponds to double the resolution of the
input image. This allows detection of feature points with
sub-pixel accuracy, which leads to a larger number of more
stable features.

For each octave, the objective function F (X, y, 0, t, ¢) is
sampled at five values of the o parameter. As discussed in
Section 3.1, below, to detect a point at scale o, the present
exemplary algorithm inspects the scales above and below it.
This means that searching is limited to features in three scales
for each octave. In order to cover the scale space more uni-
formly, overlap is allowed for between scales. The Table of
FIG. 8 shows the values of o used.

Although the sampling of o can be decoupled from the
sampling of the other observation parameters, the sampling of
the t and ¢ must be related. To see why, it is sufficient to note
that, when t=1 (i.e., 8=0 and the object is observed in a frontal
view,) the angles 1 and ¢ degenerate into a single rotation,
and thus it is sufficient to sample one ¢ value (namely, $=0).
However, as the angle 6 increases and t—0, the object
becomes more distorted, and it is necessary to sample ¢ more
finely in order to find all the relevant feature points. Table 800
of FIG. 8 shows the (t, ¢) combinations used, and FIG. 9 plots
these combinations to illustrate how this example covers the
range of ¢ values from 0° to 180°. As illustrated in FIG. 10, the
values of ¢ were chosen to facilitate the creation of the rotated
integral images. Note that, by carefully choosing the values of
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¢ and by rotating the filters when ¢ is greater than 90°, the
exemplary algorithm only requires the construction of a total
of 8 integer images per input image.
2.2 Filter Bank
Since this example uses rotated integral images to model
the rotation ¢ in the exemplary objective function F (x, y, 0, t,
¢), the filters used in the algorithm incorporate only the values
of 0 and t and thus must follow Equation (9).
One possible way of creating the filter bank is to substitute
all the o and t values in Table 800 of FIG. 8 into this equation
and then create box filter approximations of all the filters.
Although this is possible, experiments showed that superior
results could be obtained if a single approximation with box
filters is created (for the initial values of 0,=2.0 and t,=1) and
then adapted so that it approximates the function in Equation
(9) for all the desired values of o and t. This method is
preferred because it ensures that all the filters used have the
same symmetries and number of boxes.
FIG. 11B shows this initial filter approximation 1100 of the
original filter 1104 shown in FIG. 11A. Itis interesting to note
that, although the filter seems complex, it only requires four
boxes 1108A to 1108D as shown in FIG. 11C. In order to
simplify the computations, the weights of each box are set to
-1 for boxes 1108A and 1108B and 3 for boxes 1108C and
1108D. Additionally, the output of filter 1100 is divided by
the total area of the filter (15x15=225 in this case) to ensure
that all filters have a constant Frobenius norm and therefore
can be compared.
Based on filter 1100 in FIG. 11B, the remaining filters in
the filter bank can be constructed by the following procedure:
Since the parameter o has the effect of scaling the filter
coordinates isotropically (by an amount proportional to
0), in order to produce a filter with parameter o,=kx 0o,
both the x and y coordinates of the original filter are
scaled by k.

Since the parameter t has the effect of scaling only the x
filter coordinate (by an amount inversely proportional to
k), in order to produce a filter with parameter t,=1/kxt,,
the x coordinate of the original filter are scaled by k.

For certain values of the parameter t,, it is not possible to
scale the filter so that the coordinates of all boxes are integer
numbers. In this case the parameter k is adjusted so that all
boxes have integer corners and the proportions of the filter are
maintained. FIG. 12 shows all the filters corresponding to the
first octave of o.

3. Iterative Feature Detection and Description

In this section exemplary feature detection and description
algorithms are described. In section 3.1, a greedy algorithm
that is used to detect features one at a time is described.
Sections 3.2 and 3.3 describe the algorithms for orientation
assignment and feature description.

3.1 Iterative Feature Detection

An exemplary greedy detection algorithm starts by ran-
domly selecting values of (o, t, ¢) from the set of samples of
the observation parameters detailed in Section 2.1. For each
set of observation parameters, the algorithm then selects a
random starting location (X, y,) and decides whether the
search is for a maximum or a minimum. Based on these
parameters, a greedy algorithm is used to find a local maxi-
mum or minimum as required.

When it starts, the exemplary object/scene recognition
algorithm selects starting locations randomly. However, after
several batches of features have been found and matched, the
algorithm determines if there is any significant region of the
image for which there are no matches. If so, the feature
detection is restricted to this region. This allows the algorithm
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to search difficult sections of the image more thoroughly,
while avoiding the search for features in sections that have
already been matched.

In this example, the detection algorithm consists of three
phases. In the first phase the filter bank described in section
2.2 is used to compute the value of the objective function at
(X, Vo) and its nearest neighbors in the x and y directions. A
total of 8 neighbors are observed (including the diagonals)
and the algorithm moves to the smallest or largest of the
neighbors (depending on whether it is searching for a maxi-
mum or a minimum.) This process is repeated until the algo-
rithm converges.

The point found by this procedure is not necessarily a local
extreme point of the objective function F (x, y, o, t, ¢) in
Equation (13) since it is only greater or smaller than its
neighbors in the x and y directions. In the second phase, the
stability of the features found can be improved by verifying
that the point is a local extreme point. In one example, this is
done by comparing the point to its 18 neighbors in the scale
above and below as illustrated in FIG. 13.

In the first phase of the feature detection algorithm the
central point * is compared to its eight neighborsxin the same
scale 0. In the second phase, the central point * is compared
to its 18 neighbors o in the scales above a o*** and below o~ *.
In theory, the point should be compared with its neighbors in
the t and ¢ directions. In practice, however, making these
comparisons increases the running time and reduces the num-
ber of features found without significantly improving the
global performance of the algorithm. Additionally, to further
improve the stability of the features detected, in the third
phase candidate features are rejected that have low contrast or
that are situated along edges. It is important to reject these
features because they are poorly localized and therefore more
susceptible to noise.

First, in order to remove low contrast features, it is required
that the absolute value of the affine space function IF (x, y, o,
t, ¢)I be greater than a threshold K . Second, in order to
remove features along edges, the ratio of principal curvatures
atthe feature point is used. A high ratio of principal curvatures
indicates that the image gradient is very strong in one direc-
tion (perpendicular to the edge) and weak in the other direc-
tion (along the edge).

To compute the ratio of principal curvatures, this example
starts by constructing the Hessian matrix at the location and
observation parameters of the feature:

(14)
DD

XYYy

H:[DUDW}

To compute the ratio of principal curvatures it is not nec-
essary to explicitly determine the eigenvalues of H. Instead, if
it is desired to ensure that the ratio between the largest eigen-
value and the smaller one is below K , it is sufficient to ensure
that:

(K, + 1) (15)

K,

Tr(H)?
Det(H)

where Tr (H) and Det (H) denote the trace and the determinant
of the H matrix in Equation (14).
3.2 Orientation Assignment

The feature detection strategy described in the previous
section finds the location (x,, y,) and observation parameters

10

15

20

25

35

40

45

50

55

60

65

14

(09, t9s §g) of each feature. Before a feature can be matched,
itis necessary to estimate the orientation of the feature 1, and
to create a descriptor d that accurately describes the neigh-
borhood of the feature. The exemplary method presented here
is adapted from SIFT in order to be affine invariant. The
gradients of the image in a neighborhood of the feature point
is used to estimate both the orientation ), and the descriptor
d of each feature point.

First, a Gaussian filter with 0=0,, is applied to the original
image and sample the filter output, G (X, y), in a rectangular
grid surrounding the feature point extracted from the rotated
integral image corresponding to ¢,. To achieve affine invari-
ance, the grid is normalized by the values of the observation
parameters o, and t,, as shown in FIG. 14. The derivatives of
G(x, y) is computed:

G (x, y)=G(x+1, y)-G(x-1, y)

Gy(xy)=G(x, y+1)-G(x, y-1) (16)

Using these functions, the magnitude and orientation of the
gradient of the objective function in the neighborhood of the
detected feature point is computed:

M(u, v) = \/Gx(x +rou, y+ov)? + Gy (x+iou, y+ ov)? an

O, v) = tan’l( Gy(xo +tou, yo + o'v)]

G (xo + tou, yo +0ov)

where the are tangent computation produces values in the
range of (0, 2,) by taking into account the quadrant where (G,
(x+tou, y+ov), G, (x+tou, y+0v)) lies.

The orientation of the feature point ), is assigned by com-
puting a weighted histogram of the gradient orientation ®(u,
v) in a process similar to SIFT. First, the range of @ is divided
into 36 bins (corresponding to intervals of 10°). For each (u',
v") inthe region [-6, 6]x[-6, 6], the magnitude function M (',
v') is weighted by a Gaussian with standard deviation 1.5
(measured in the normalized coordinates (u, v)) and centered
atthe feature point and add the result to the bin corresponding
to d', v').

Once the weighted histogram is complete, the orientation
of'the feature point corresponds to its maximum as illustrated
in FIG. 14, which is an example of a grid 1400 used for the
orientation assignment. Note that grid 1400 is sampled from
the rotated integral image corresponding to ¢, and is adjusted
to take into account the location of the feature and the obser-
vation parameters 0, and t, (and therefore does not necessar-
ily align with the pixel grid.) For clarity, the sample region is
shown as a 4x4 grid whereas in practice, a larger grid is used.
To increase the stability of the algorithm, additional orienta-
tions are assigned to the feature point if they correspond to
maximums that are above 80% of the global maximum. The
location of all maximums is then refined by using quadratic
interpolation with the two nearest bins.

3.3 Local Descriptor

The computing of the local descriptors is started by recom-
puting the magnitude and orientation of the gradient of G(x,
y) in a neighborhood of the feature point that is normalized
not only to the o, and t, observation parameters but also the
orientation parameter 1\, estimated in Section 3.2, FIG. 15
shows the extraction of a grid 1500 that simulates all the
parameters as well as the normalized version of the same grid.
Note that grid 1500 is sampled from the rotated integral image
corresponding to ¢, and is adjusted to take into account not
only the observation parameters o, and t,, but also the orien-
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tation 1, estimated in Section 3.2. For clarity, the sample
region is shown as a 4x4 grid whereas in practice, a larger grid
is used.

To compute the descriptor d in this example, a 16x16 grid
around the feature point location is extracted and weighed by
a Gaussian function with standard deviation of 8 (in the
normalized (u, v) units) and centered at the feature point. This
grid is then divided into sixteen 4x4 sections and a 8-bin
weighted histogram of gradient orientations is computed for
each section. To avoid boundary effects in which the descrip-
tor changes abruptly for a small change in feature location,
trilinear interpolation is used to distribute the value of each
gradient sample into the eight nearest bins.

The resulting histograms are concatenated to form a 4x4x
8=128 dimensional descriptor vector d. To reduce the effect
of illumination changes, the vector is normalized to unit
length and entries of the vector are thresholded so that no
single entry has a weight greater than 0.2 (if any entries are
thresholded, the vector is normalized again so that its length
is 1).

4. Feature Matching

This section describes an exemplary feature matching pro-
cedure. Section 4.1 describes how the exemplary object/scene
recognition algorithm conducts a nearest neighbor search
between descriptors in the reference and query images for
each batch of features detected. Sections 4.2 and 4.3, detail
how the initial matches are then pruned by removing weak
matches and using a clustering algorithm. Section 4.4,
describes how, to further improve the robustness and stability
of'the algorithm, the algorithm estimates and verifies tentative
homographies between the images.

4.1 Nearest Neighbor Search

Once features are detected and described, it is necessary to
match them so that they can be used to recognize an object or
scene. The first step of the exemplary matching procedure is
to establish tentative matches based solely on the information
of the k-dimensional feature descriptors d eR *.

The descriptor matching problem can be formulated as the
search for the reference descriptor that is closest (is the near-
est neighbor) to the query descriptor. That is, if D < R *is the
set of reference descriptors and d' is the query descriptor, the
nearest neighbor of d', denoted as d”, is defined as:

d"=arg miny_pdist(d’, d) (18)

where the Euclidean distance is used as a measure of “close-
ness,” or similarity, between descriptors.

The problem of finding the exact nearest neighbor in a high
dimensional spaceis hard. In fact, when the dimensionality of
the space is high, no known algorithm outperforms brute
force search. State of the art approaches deal with this prob-
lem by allowing for error in the nearest neighbor look up. That
is, for each query descriptor d', they report “approximate”
nearest neighbors that may or may not correspond to the
descriptors that are closest to d'.

The Fast Library for Approximate Nearest Neighbors
(FLANN) approach implements multiple methods of nearest
neighbor search and can achieve very fast query times, but is
not well suited to a situation, as in the present case, where the
number of reference features may grow at runtime. Typical
approaches, such as the original implementation of k-d Trees
and the Best Bin First algorithm, use balanced k-d Trees and
rely on the fact that all features in both images have been
detected and described before feature matching begins. Such
methods, however, are not desirable for this framework
because methods of the present invention detect features in
batches.
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In the present example this problem is dealt with by intro-
ducing a new feature matching algorithm based on the use of
an “iterative k-d Tree” This new data structure is ideal for
applications in which the number of features can increase
because it can be easily expanded to incorporate more refer-
ence features and stores information about previous queries
so that they do not need to be rerun when new reference
descriptors are introduced in the Tree.

Instead of attempting to create a balanced k-d Tree, this
new algorithm creates the Tree randomly so as to ensure fast
insertion of new reference descriptors. When a new reference
descriptor d”*" is inserted, it first descends the Tree turning
left or right at each node n by evaluating whether d**” (n,)
=n,, or d** (n,)>n,, . When the descriptor to be inserted
reaches a leaf, a new node n' is created and a discriminatorn',
is assigned randomly. The threshold n',,, is assigned as the
mean of the values of the new descriptor and the descriptor
inside the leaf d°*“ values along dimension n', That is:
', =A™ (n',)+d° (n',)) is made.

The initial search on a iterative k-d Tree is similar to the
search on a conventional k-d Tree except that information
about previous queries is stored. For each query, the list of
nodes to revisit consists of the bins that intersect the nearest
neighbor hyperball. Any node outside this list is irrelevant and
does not need to be searched again, even if it changes by the
insertion of a new descriptor. The top of FIG. 16 illustrates the
search procedure and the list of nodes to revisit. As in a best
bin first (BBF) algorithm, the number of times that the algo-
rithm backtracks is limited to 3.

At the top of FIG. 16, search algorithm is similar to stan-
dard k-d Tree (the descriptor (2.2, 0.9) is determined to be the
nearest neighbor) with the critical difference that nodes that
cross the nearest neighbor hyperball are marked to be revis-
ited. At the middle of FIG. 16, the insertion of the reference
descriptor (0.2, 0.6) does not alter the nodes in the list to
revisit and therefore it is not necessary to repeat the previous
query. At the bottom of FIG. 16, the insertion of the reference
descriptor (2.2, 1.3) alters the structure of one of the nodes on
the list to revisit. The search for the nearest neighbor of the
query node is resumed only on the new node. As a result of the
search, the nearest neighbor is determined to be (2.2, 1.3), and
the list of nodes to revisit is updated.

After the initial search, the insertion of more reference
descriptors onto the Tree proceeds as illustrated in the middle
and bottom of FIG. 16. Unlike the traditional k-d Trees, the
insertion of additional nodes to the Tree does not force the
previous queries to be re-run. As shown in the middle of F1G.
16, if the inserted reference descriptor does not alter any node
in the list to revisit, the previous query is not affected. More-
over, as shown in the bottom of FIG. 16, even if the inserted
reference descriptor changes a node in the list to revisit, it is
sufficient to consider only the new node created by the inser-
tion, instead of restarting the search.

It is noted that while the novel iterative k-d Tree algorithm
just described as useful for matching visual features in the
context of an iterative feature-matching scheme such as dis-
closed herein, as those skilled in the art will readily appreci-
ate, this algorithm can be used in other applications, espe-
cially where data sets grow over time. For example, in an
Internet context, a k-d Tree can be built for images available
on webpages across the Internet. The k-d Tree can then be
used to search for images having content similar to or the
same as a query image. In effect, all ofthe images represented
in the k-d Tree are reference images to which the query image
is compared to find nearest neighbor matches. However,
images are added to webpages all of the time, so once a
traditional k-d. Tree is built and searched, its results are
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almost immediately outdated once a new image is added to
the k-d Tree because conventional k-d Tree searching requires
the entire tree to be re-searched. Using the novel k-d Tree
algorithm presented above to include the new images in the
search, however, prevents the need to repeat an entire search
by using information from the original search (i.e., the search
performed prior to the addition of one or more new images to
the k-d Tree) to speed-up the update. Other applications for
the novel iterative k-d Tree algorithm include, among others,
simultaneous location and mapping for autonomous vehicles,
wherein the vehicle learns a map of the environment that is
updated as it moves; automatic recognition of objects,
wherein the feature database increases as more objects are
recognized; etc. Those skilled in the art will undoubtedly
recognize other applications in which iterative k-d Tree algo-
rithms may decrease computational time and/or need for
additional computing resources.

4.2 Removal of Weak Matches

In most practical applications simply finding the nearest
neighbor of each query descriptor is not sufficient for two
reasons. First, just because two features have similar descrip-
tors it is not guaranteed that they come from the same object
or scene. Different objects may look similar at the local level
if, for example, they are made from the same material. Sec-
ond, because the query image often contains strong move-
ment, distortions, occlusion and background clutter, it is com-
mon to find features in the query image that are not present in
the reference image. Naturally, in this case the query feature
does not have a match in the database and thus any nearest
neighbor algorithm produces an incorrect match.

One way to deal with this limitation is to remove the
“weaker” matches by requiring a threshold on the distance to
the nearest neighbor and excluding matches for which the
nearest neighbor is above the threshold. Although feasible,
this rule does not perform well because some descriptors are
much more discriminating than others. Instead, the present
example uses the ratio of the distances to the closest and
second-closest neighbors and remove matches for which the
ratio is too high (i.e., the closest and second-closest neighbors
are at approximately the same distance, and therefore the
descriptors have little discriminating power); i.e., if &"” is the
nearest neighbor and d” is the second nearest neighbor of the
query descriptor d', matches are eliminated for which:

disi(d .d™)
dist(d’, d™)

19
H > thrgy a9

To summarize this strategy, the descriptor matching step
starts by finding, for all features in the query image, the
closest and second-closest neighbor in the reference image.
Each feature in the query image is matched to its closest
neighbor in the reference image except when the ratio
between the closest and second closest neighbors is too high,
in which case the query feature is discarded
4.3 Clustering on the Affine Space with the Hough Transform

The high outlier ratio after the feature matching step pre-
vents the use, at this stage in the algorithm, robust fitting
methods such as RANSAC or Least Median of Squares.
Instead, this example uses the Hough Transform to reject
many of the outlier matches. The Hough Transform works
through a “voting” procedure. The process is started by
broadly segmenting the set of matches along the location (x,
y) and observation parameters (o, t, ¢, |); i.e., the range of
image locations and parameters is divided into large bins (or
clusters) and each match is added to (“votes in”) its corre-
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sponding bin. To improve robustness, each of the matches is
also added to all its neighboring bins.

Through this procedure, each match “votes” in all the
movement distortions that are consistent with it. Since the
outliers are essentially random, it is expected that only the
bins that correspond to true object matches will gather a
significant number of votes. Thus, only features that corre-
spond to bins above a minimum threshold of votes are kept.

Because this example uses large bins, all matches inside
each bin are further pruned. This is done through a verifica-
tion procedure using least-squares to estimate the best affine
projection parameters between the matches in the bin.
Matches that do not fit with this least-squares regression are
removed and the affine projection is recomputed. The process
is repeated until convergence. If at any time the number of
matches in the bin falls below the threshold, then all of the
matches inside the bin are pruned.

4.4 Homography Estimation and Verification

The previous step removed outliers by requiring that all
points inside a bin in the location and observation space be
loosely related by an affine transformation. To further
improve the quality of the matches, all points in the image are
considered and searched for multiple global distortions.

In this example the global distortions between the image
are modeled by multiple homographies. The homography
transformation is more general than the affine transformation
and can model (assuming an ideal pin-hole camera) the gen-
eral transformation between one plane in two images.

In one example RANSAC is used to estimate multiple
homographies between points in the images. To verify that
each detected homography is correct, a new query image is
created that simulates its effects; i.e., each homography is
inverted and the inverted homography is applied to the query
image. This process yields a “normalized” query image in
approximately the same pose as the reference image and
therefore makes the recognition task much easier.

To verify that the matches were correct, the algorithm
attempts to match this “normalized” query image to the origi-
nal reference image. Since the pose of the “normalized” query
image is consistent with the pose of the reference image, it is
not necessary to use a general affine model for this second
feature matching operation. Instead, the algorithm uses the
simpler scale-plus rotation model by making t=1 and ¢=0 in
the feature detection and description steps.

if a significant number of matches are not found in the new
query image, the homography and all the matches that were
consistent with it are discarded. If, on the other hand, a large
number of matches are found, then they are kept and reported
by the algorithm. If the number of matches is between these
two extremes, then the process is repeated; i.e., the matches
detected in the new query image are used to estimate a new
homography and that homography is used to estimate a new
“normalized” query image that will be analyzed against the
original reference image. This procedure is repeated for each
of the homographies found in the original images.

5. Overview of the Exemplary Object/Scene Recognition
Algorithm

To summarize, the following high level overview of an
exemplary object/scene recognition algorithm is presented:
1. (Initialization)

For each input image, compute a set of 8 rotated integral

images as described in Section 1.4,
2. (Feature Detection and Description)

Using the algorithms presented in Sections 3.1, 3.2, and
3.3, detect, compute the orientation of and create a
descriptor for, a batch of N' features in each of the
images.
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3, (Feature Matching)

Search for matches between all previously detected fea-

tures in the reference and query images.
4. (Homography Estimation and Verification)

Using the techniques detailed in Section 4.4, attempt to

detect and identify homographies in the image.
5. (Decision)

If the number of matches detected and verified is below a
threshold N, .., return to step 2; Otherwise, report all
matches found.

Exemplary embodiments have been disclosed above and
illustrated in the accompanying drawings. It will be under-
stood by those skilled in the art that various changes, omis-
sions and additions may be made to that which is specifically
disclosed herein without departing from the spirit and scope
of the present invention.

What is claimed is:

1. A method of matching visual features within a first
image with visual features within a second image, compris-
ing:

starting with a coarse sample, automatedly iteratively sam-

pling visual features of each of the first and second
images so as to continually increase sampling density of
said sampling; and

continuing said sampling until at least a desired number of

unambiguous matches has been found between batches

of the visual features of the first and second images

detected in iterations of said iterative sampling;

wherein:

said sampling includes finding discriminative regions of
each of the first and second images; and

said finding discriminative regions includes finding
extrema of a function.

2. A method according to claim 1, wherein the function is
a function of scale and tilt.

3. A method according to claim 1, wherein the function is
a function of scale and object-plane rotation.

4. A method according to claim 1, wherein said finding
extrema of a function includes finding extrema of an affine-
space function.

5. A method according to claim 4, wherein the affine-space
function is a function of scale, tilt, and object-plane rotation.

6. A method according to claim 1, wherein said sampling
includes iteratively detecting successive batches of features
in the first and second images.

7. A method according to claim 6, wherein said detecting
includes iteratively detecting successive batches using a
greedy algorithm.

8. A method according to claim 7, wherein said detecting
includes searching for local extrema in first and second space-
functions for corresponding respective ones of the first and
second images.

9. A method according to claim 8, wherein said detection
includes using a filter bank to compute values of a space-
function at a plurality of points within each of the first and
second images.

10. A method according to claim 9, wherein said detecting
further includes using the filter bank to compute values of the
space-function of nearest-neighbors of each of the plurality of
points for a single scale value until convergence.

11. A method according to claim 10, wherein said detecting
further includes using the filter bank to compute values of the
space-function of nearest neighbors at scale values adjacent
the single scale value.

12. A method according to claim 9, further comprising
constructing the filter bank using box filters.
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13. A method according to claim 1, further comprising
searching for matches of visual features in a batch of features
sampled for the first image with visual features in a batch of
features sampled for the second image using a nearest neigh-
bor searching algorithm.

14. A method according to claim 13, wherein said search-
ing includes searching for matches using an iterative k-d Tree.

15. A method according to claim 14, wherein said search-
ing for matches using an iterative k-d Tree includes keeping a
list of nodes of the iterative k-d Tree to be revisited when at
least one new node is added to the iterative k-d Tree.

16. A method according to claim 15, wherein said search-
ing for matches using an iterative k-d Tree further includes
identifying a nearest-neighbor hyperball and revisiting only
bins that intersect the nearest-neighbor hyperball.

17. An object/scene recognition method, comprising:

1) automatedly generating a batch of feature descriptors for

a plurality of sampled visual features of a first image;

2) automatedly generating a batch of feature descriptors for

aplurality of sampled visual features of a second image;

3) automatedly performing a matching algorithm on the

batches in attempt to find matches between the feature
descriptors in the batch corresponding to the first image
and the feature descriptors in the batch corresponding to
the second image;

4) automatedly assessing the quality of matches; and

if the quality of the matches does not meet a threshold,

automatedly repeating said steps 1 through 4 with dif-
fering sets of batches until the quality of the matches
meets or exceeds the threshold:,

wherein:

said steps 1 and 2 include finding discriminative regions
of each of the first and second images; and

said finding discriminative regions includes finding
extrema of a function.

18. A method according to claim 17, wherein the function
is a function of scale and tilt.

19. A method according to claim 17, wherein the function
is a function of scale and object-plane rotation.

20. A method according to claim 17, wherein said finding
extrema of a function includes finding extrema of an affine-
space function.

21. A method according to claim 20, wherein the affine-
space function is a function of scale, tilt, and object-plane
rotation.

22. A method according to claim 17, wherein said steps 1
and 2 include generating a set of rotated integer images for
each of the first and second images.

23. A method according to claim 22, wherein each of said
steps 1 and 2 includes sampling the corresponding one of the
first and second images by applying an affine-space function
to the corresponding set of rotated integer images.

24. A method according to claim 23, wherein said sampling
includes applying a bank of filters to the affine-space func-
tion.

25. A method according to claim 24, wherein said applying
a bank of filters includes applying a set of approximated box
filters to the affine-space function.

26. A method according to claim 17, wherein each of said
steps 1 and 2 includes detecting visual features in the first and
second images using a greedy algorithm.

27. A method according to claim 17, wherein each of said
steps 1 and 2 includes generating an orientation for each of the
plurality of features.
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28. A method according to claim 17, wherein said step 3
includes performing a nearest-neighbor search for the feature
descriptors as between the batches for the first and second
images.

29. A method according to claim 28, wherein said perform-
ing a nearest-neighbor search includes performing a nearest-
neighbor search using an iterative k-d Tree.

30. A method according to claim 29, wherein said perform-
ing a nearest-neighbor search using an iterative k-d Tree
includes keeping a list of nodes of the iterative k-d Tree to be
revisited when at least one new node is added to the iterative
k-d Tree.

31. A method according to claim 30, wherein said search-
ing for matches using an iterative k-d Tree further includes
identifying a nearest-neighbor hyperball and revisiting only
bins that intersect the nearest-neighbor hyperball.

32. A computerized method of identifying, from a plurality
of reference descriptors, a nearest neighbor to a query
descriptor, the computerized method comprising:

automatedly generating an initial k-d Tree from an initial

set of the plurality of reference descriptors and storing
the initial k-d Tree in a memory;

automatedly searching the initial k-d Tree for an initial

nearest-neighbor ofthe initial set to the query descriptor;

automatedly identifying a hyperball as a function of the
initial nearest-neighbor;

automatedly generating a list of nodes to revisit as a func-

tion of the hyperball and storing the list in a memory;

adding at least one of the plurality of reference descriptors
that is not in the initial set to the initial k-d Tree to create
an expanded k-d Tree containing the initial k-d Tree as
an initial portion; and

subsequent to said adding, searching the initial portion of

the expanded k-d Tree using only nodes in the list of

nodes to revisit.

33. A computerized method according to claim 32, wherein
said automatedly generating a list of nodes to revisit includes
generating a list of nodes that contain only nodes that intersect
the hyperball.

34. A machine-readable storage medium comprising
machine-executable instructions for performing an object/
scene recognition method, said machine executable instruc-
tions comprising:

a first set of machine-executable instructions for perform-

ing at least the following steps:

1) generate a batch of feature descriptors for a plurality
of sampled visual features of a first image;

2) generate a batch of feature descriptors for a plurality
of sampled visual features of a second image;

3) perform a matching algorithm on the batches in
attempt to find matches between the feature descrip-
tors in the batch corresponding to the first image and
the feature descriptors in the batch corresponding to
the second image;

4) assess the quality of matches; and

a second set of machine-executable instructions for deter-

mining if quality of the matches meets a threshold and

automatedly repeating said steps 1 through 4 with dif-
fering sets of batches until the quality of the matches
meets or exceeds the threshold;

wherein:

machine-executable instructions of said first set of
machine-executable instructions for said steps 1 and 2
include machine-executable instructions for finding
discriminative regions of each of the first and second
images; and
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said machine-executable instructions for finding dis-
criminative regions includes machine-executable
instructions finding extrema of a function.

35. A machine-readable storage medium according to
claim 34, wherein the function is a function of scale and tilt.

36. A machine-readable storage medium according to
claim 34, wherein the function is a function of scale and
object-plane rotation.

37. A machine-readable storage medium according to
claim 34, wherein said machine-executable instructions for
finding extrema of a function includes machine-executable
instructions for finding extrema of an affine-space function.

38. A machine-readable storage medium according to
claim 37, wherein the affine-space function is a function of
scale, tilt, and object-plane rotation.

39. A machine-readable storage medium according to
claim 34, wherein machine-executable instructions of the first
set of machine-executable instructions for said steps 1 and 2
include machine-executable instructions for generating a set
of rotated integer images for each of the first and second
images.

40. A machine-readable storage medium according to
claim 39, wherein machine-executable instructions of the first
set of machine-executable instructions for each of said steps
1 and 2 includes machine-executable instructions for sam-
pling the corresponding one of'the first and second images by
applying an affine-space function to the corresponding set of
rotated integer images.

41. A machine-readable storage medium according to
claim 40, wherein said machine-executable instructions for
sampling includes machine-executable instructions for
applying a bank of filters to the affine-space function.

42. A machine-readable storage medium according to
claim 41, wherein said machine-executable instructions for
applying a bank of filters includes machine-executable
instructions for applying a set of approximated box filters to
the affine-space function.

43. A machine-readable storage medium according to
claim 42, wherein machine-executable instructions of the first
set of machine-executable instructions for each of said steps
1 and 2 includes detecting visual features in the first and
second images using a greedy algorithm.

44. A machine-readable storage medium according to
claim 34, wherein machine-executable instructions of the first
set of machine-executable instructions for each of said steps
1 and 2 includes machine-executable instructions for gener-
ating an orientation for each of the plurality of features.

45. A machine-readable storage medium according to
claim 34, wherein machine-executable instructions of the first
set of machine-executable instructions for said step 3 includes
machine-executable instructions for performing a nearest-
neighbor search for the feature descriptors as between the
batches for the first and second images.

46. A machine-readable storage medium according to
claim 45, wherein said machine-executable instructions for
performing a nearest-neighbor search includes machine-ex-
ecutable instructions for performing a nearest-neighbor
search using an iterative k-d Tree.

47. A machine-readable storage medium according to
claim 46, wherein said machine-executable instructions for
performing a nearest-neighbor search using an iterative k-d
Tree includes machine-executable instructions for keeping a
list of nodes of the iterative k-d Tree to be revisited when at
least one new node is added to the iterative k-d Tree.

48. A machine-readable storage medium according to
claim 47, wherein said machine-executable instructions for
searching for matches using an iterative k-d Tree further
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includes machine-executable instructions for identifying a a fourth set of machine-executable instructions for gener-
nearest-neighbor hyperball and revisiting only bins that inter- ating a list of nodes to revisit as a function of the hyper-
sect the nearest-neighbor hyperball. ball and storing the list in a memory;

49. A machine-readable storage medium containing a fifth set of machine-executable instructions for adding at
machine-executable instructions for performing a method of 5 least one of the plurality of reference descriptors that is
identifying, from a plurality of reference descriptors, a near- not in the initial set to the.initial k'd Tree to create an
est neighbor to a query descriptor, the machine-executable expanded k-d Tree containing the initial k-d Tree as an

initial portion; and

instructions comprising: . . . .
a sixth set of machine-executable instructions for, subse-

a first set of machine-executable instructions for generat-

ing an initial k-d Tree from an initial set of the plurality 10 quent fo said adding, sear ching the igitial pqrtion of the
ofreference descriptors and storing the initial k-d Tree in ::xpan.de.:td k-d Tree using only nodes in the list of nodes
0 revisit.

a memory;

asecond set of machine-executable instructions for search-
ing the initial k-d Tree for an initial nearest-neighbor of
the initial set to the query descriptor;

athird set of machine-executable instructions for identify-
ing a hyperball as a function of the initial nearest-neigh-
bor; N

50. A machine-readable storage medium according to

claim 49, wherein said fourth set of machine-executable

15 instructions includes machine-executable instructions for

generating a list of nodes that contain only nodes that intersect
the hyperball.



